Methane mitigation through nutrition

Reality or illusion?

Symposium VLAIO LA traject SMART MELKEN

Thursday October 6th, 2016, Melle

VLAIO - SMART Melken

Nutritional steering towards an economical and ecological sustainable dairy farm: focus on methane and nitrogen-efficiency

4 year project: started on December 1th 2014

one of the goals: dissemination of knowledge today focus on methane

Agricult. contribution to GHG?

ETS (energy-intensive) vs non-ETS

Flanders:

> Agriculture: **8,2**% of total GHG (ETS + non-ETS). (VMM)

> Agriculture: 16% of Flanders non-ETS emissions. (Vlaams Mitigatieplan)

Evolution GHG Flanders agriculture 1990-2013

- 26% reduction since 1990 (reference) (Mira T rapport)
 - > strong decrease 1990-2008, but stagnation from 2008
 - > main causes of decrease
 - a) decreased energy use in greeneries and stables
 - b) reduction of livestock
 - c) adjusted fertilisation

European overall goal: by 2030 40% reduction

by 2050 80% reduction

Agricultural emissions Flanders by GHG

MIRA (CO₂ eq)

BKG		Jaar in atmosfeer	SAR (100)	AR5 (100)
Koofstofdioxide	CO ₂	100-200	1	1
Methaan	CH ₄	12	21	34
Lachgas	N ₂ O	121	310	298

CH₄ – basic facts

- The main sources of CH₄ in agriculture are the fermentation in the rumen (49%) and manure storage (44%) (pigs 38% - cattle 6%)
- A dairy cow produces 200 to 500 g of methane per day. This corresponds to 6-10% of the gross energy intake.
- The micro-organisms (methanogens), not the cow forms methane from H₂ and CO₂, which are formed during the anaerobic degradation of the feed.
- 90-95% CH₄ originates from the rumen and 5-10% is formed in the colon. The methane is then excreted through regurgitation (eating, ruminating), breathing and (very limited) by rectal excretion

Point of attention 1: mitigation measures may induce shifts

FIGURE 9. Regional variation in cattle milk production and GHG emission intensities

Point of attention 2: strong links with other environmental problems

EIP -AGRI Focus Group, Reducing emissions from cattle farming STARTING PAPER

Interrelated environmental concerns

NH₃ - PAS

CH₄ - climate

Local problem

Emissions from manure

Acidification / eutrophication

emissie

N (lucht)

SBZ Depositie

HD

World wide problem

Enteric + manure emissions

Global warming

Overview projects delivering data or input

Running projects:

SMART melken (IWT) www.ilvo.vlaanderen.be/smartmelken

"Nutritional steering towards an economical and ecological sustainable farm: focus on methane and nitrogen efficiency"

partner: Innovatiesteunpunt (today only methane aspect)

Rumen stability (EU-FACCE)

"Understanding the development and control of stability in the rumen microbiome as a basis for new strategies to reduce methanogenesis"

partner: Lanupro Ugent

GA genomics (ILVO) www.ilvogenomics.be

"Deep diving in the genomic diversity of populations"

Different smaller ILVO-research trials (ILVO)

Finished project:

SMEthane (EU) www.smethane.eu

"Technological platform to develop nutritional additives to reduce methane emissions from ruminants"

partners: Lanupro Ugent + partners from UK, Spain, France, Switserland